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Continued Fractions and Chaos

R. M. Corless

1. INTRODUCTION. This paper is meant for the reader who knows something
about continued fractions, and wishes to know more about the theory of chaotic
dynamical systems;' it is also useful for the person who knows something about
chaotic dynamical systems but wishes to see clearly what the effects of numerical
simulation of such a system are. This paper is not purely introductory, however:
there are new dynamical systems results presented here and also in the companion
paper (Corless, Frank & Monroe [1989]), which presents some discussion of
dynamical reconstruction techniques and dimension estimates.

The theory of continued fractions goes back at least to c. A.p. 500 to the work of
Aryabhata, and possibly as far back as ¢. 300 B.c. to Euclid. The theory of chaotic
dynamical systems is relatively recent, going back only to the work of Poincaré
[1899] and Birkhoff [1932]. The foundations of the theory of continued fractions, as
we know it now, are well established due to the work of Euler, Lagrange, Gauss,
and others, while the foundations of chaotic dynamical systems are still evolving.
This paper will use the well-established theory of simple continued fractions to
explore some current results of the theory of chaotic dynamical systems.

Olds [1963] gives a good introduction to the classical theory of simple continued
fractions, by which we mean continued fractions of the form

ny + 1
1

n,+ ——
2 n3+...

where the n, are all positive integers, except n, which may be zero or negative. We
will denote this as n, + [n, n,, n,,...], and in what follows n, will usually be
zero. Simple continued fractions have found applications in Fabry-Perot interfer-
ometry (Ikeda & Mizuno [1984]), and the concept of “noble” numbers used in
orbital stability and quasi-amorphous states of matter (Schroeder, [1984]). For
other uses of simple continued fractions in chaos, see Devaney [1985]. Other types
of continued fraction exist, for example, Gautschi [1970], Henrici [1977], Jones and
Thron [1980], and others, use functional or analytic continued fractions in approxi-
mation theory, since analytic continued fractions can be very effective for computa-
tion. We will not be concerned with such continued fractions. We will summarize
in the next section all the classical results that we need, without proof. Proofs can
be found in Olds [1963], Hardy and Wright [1979], Niven [1956], Khinchin [1963],
Billingsley [1963], and Mafié [1987].

'One referec has remarked that “This describes the referee, who admits to having found the paper
interesting. Though, I suspect, now, more people know about chaos than continued fractions.” The
author is inclined to agree, and hopes that this paper will interest some of these people in continued
fractions.
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2. SUMMARY OF CLASSICAL RESULTS

The Gauss Map. We begin with the classical method for finding the continued
fraction representation of a number y. We put n, equal to the integer part of vy,
by which we mean the greatest integer less than or equal to y. If the fractional part
of y is not zero, we put vy, equal to the fractional part of y. We then invert vy,
and put n, equal to the integer part of 1/vy,. Similarly we put vy, equal to the
fractional part, and repeat. Note that n, may be positive, negative, or zero, but
that all the subsequent n; will be positive, and that each y; is in the interval [0, 1).
This process gives us unique continued fraction for each starting point y, and the
process terminates if and only if v is rational. (For any rational y there is one
other simple continued fraction which is only trivially different from the one
generated by this algorithm.) This algorithm is related to the Euclidean algorithm
for finding the greatest common divisor (gcd) of two integers k and m (Olds
[1963)), in that if we use this method to find the continued fraction of k/m, then
the integer parts that arise are precisely the quotients that arise in the Euclidean
algorithm, and in fact the last nonzero remainder from the Euclidean algorithm
appears as the numerator of the last nonzero fractional part. This remainder is of
course the ged of £ and m. Further, this algorithm can easily be seen to terminate
in O(log(min(k, m))) operations. Classically, most attention has been paid to the
integers generated by this algorithm, which make up the continued fraction itself.
However, Gauss was apparently the first to study the other part of this algorithm,
which we present as the following map, called the Gauss map (Maiié [1987]) (see
FIGURE 1):

0 ifx=0

=171
G(x) — mod1 otherwise.
x

Figure 1. The graph of the Gauss Map G(x). Note that there are an infinite number of jump
discontinuities at values of x = 1/n, for integers n. In addition, there is a pole at the origin. The
darkening of the curve towards the origin is suggestive of the fractional nature of the capacity
dimension.

We use the notation “mod 1” to mean taking the fractional part. In terms of the
Gauss map G, our algorithm then becomes

Yis1 = fractional part of 1/y, = G(vy,)
n,., = integer partof 1/y,, fork =20,1,2,3,...

and we see that the continued fraction is generated as a byproduct of the iteration
of the Gauss map. Thus we expect that any classical results on continued fractions
will have implications for the dynamics of the Gauss map.
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Note that the jump discontinuities occuring at x = 1/n (for each integer n) may
all be removed by mapping onto the circle with the transformation e*™'*. After this
is done, we see that the Gauss map (e2™* — ¢27//%) is a map of the circle onto the
circle, and may be pictured on a torus, as in Ficure 2. The singularity at the origin
is not removed by this transformation. For convenience, the singularity is dealt
with by artificially making zero a fixed point of the map (this makes our difficulties
no worse). Most theorems on the dynamics of discrete maps assume continuity,
which is thus violated here.

Figure 2. The graph of the Gauss Map G(x) on the torus. Note that all the jump discontinuities have
been removed, but that the pole at the origin remains. The darkening of the curve towards the
singularity again gives an idea of the fractional nature of the capacity dimension.

We make the following observation: if we represent a point in the interval
[0, 1) by its continued fraction, y, = [n,, n,, n;,...], then a simple induction shows
that G(yy) =y, = [n,,n3,n,,...], Gly)) =y, =[ny,ng,ns,...10, Gly,) =y, =
[n,, ns, ng,...], and so on. This makes a connection between the Gauss map and
the “shift map” of symbolic dynamics (Devaney, 1985). We will not explore this
connection further here, but we note that the shift maps normally studied are
slightly different than the Gauss map, in that here the size of the numbers in the
list being “shifted” is not bounded.

An analogy is illuminating: if we think of our space as a circular hoop with the
origin at one point O on the hoop, our initial point as a dimensionless bead on the
hoop, and the Gauss map is taking the bead from its current position clockwise
past O at least once to its next position on the hoop, then the integers n; are the
number of times the bead passes O on the ith iteration (in general the maximum
such number is called the “winding number” of the map, and here this is obviously
infinite), and the vy, are the coordinates of the bead on the hoop once it comes to
rest. If the bead comes to rest close to the origin on one side, with a small vy,, then
on the next iteration it will be pushed many times around the hoop. If it comes to
rest close to the origin on the other side, with a y; close to 1, then it will only go
past the origin once on its next iteration. We may think of the bead as being
pushed around the circle, with the strength of the push being inversely propor-
tional to the distance measured counterclockwise from the point O.

3. DYNAMICAL SYSTEMS TERMINOLOGY. In what follows we give a compact
introduction to the terminology used in the study of discrete dynamical systems.
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For more details, see Devaney [1985]. To begin with, a discrete dynamical system
is a recurrence relation x, ., = G(x,), with the index k playing the role of a
discrete “time”. Note that the points x, may be multi-dimensional. The sequence
{x.J;_, is called the orbit of the initial point x, under the map x - G(x), and is
denoted as orb(x,). Any points x that satisfy x = G(x) are called fixed points of
the map, and more generally if x = G"(x) where G"(x) = G(G"~(x)) then x is
called a periodic point of the map. If N is the least such number n, then as usual
we say x has period N. The a-limit set of orb(x,) is the set of all initial points
whose orbits approach orb(x,) as “time” increases; to be precise, an initial point
Yo is in the a-limit set of orb(x,) if there exist m and n such that for all £ > 0
there exists K such that k > K implies |x,, ., — y,.x| <& The w-limit set of
orb(x,) is the set of accumulation points of orb(x,). An attractor of a map is a set
of points which “attracts” orbits, from some set of initial points of nonzero
probability of being selected. To be precise, an attractor of a map is an indecom-
posable closed invariant set A with the property that, given ¢ > 0, there is a set U
of positive Lebesgue measure in the e-neighbourhood of A such that if x is in U
then the w-limit set of orb(x) is contained in A and the orbit of x is contained in
U (Guckenheimer & Holmes, [1983]). An invariant set is a set such that G(A) = A,
and an indecomposable set is one which cannot be broken into two or more pieces
which are distinct under G. A map G is said to be sensitive to initial conditions
(SIQ) if initially close initial points have orbits that separate at an exponential rate.
A map that is SIC is also said to be chaotic. The possible average exponents of
these rates of separation are called the Lyapunov exponents of the map. Osledec’s
theorem (Osledec, [1968)]) states that for a wide class of maps, and for almost all
initial points, there are only finitely many possible Lyapunov exponents (in fact,
only n for an n-dimensional map).

4. CLASSICAL RESULTS INTERPRETED IN DYNAMICAL SYSTEMS TERMI-
NOLOGY PERIODIC AND FIXED POINTS OF THE GAUSS MAP. The follow-
ing classical theorem, interpreted in a modern dynamical sense, identifies the fixed
and periodic points of the Gauss map.

Theorem (Galois). The number y has a purely periodic continued fraction, including
the first integer n,, if and only if v is a “reduced quadratic irrational”, which means
that y is a root of a quadratic equation with integer coefficients and, further, that its
algebraic conjugate (i.e. the other root of the quadratic) lies in the interval (—1,0).

Corollary. The periodic points of the Gauss map are the reciprocals of the reduced
quadratic irrationals.

For a proof of the theorem, see Olds [1963], or Hardy and Wright [1979]. To prove
the corollary, we note that y = [n,, n,, nj,...] is periodic under the Gauss map if
and only if its continued fraction is periodic, starting at n,, by the shift property
mentioned in the previous section.

An example of particular interest is 7, the golden ratio, which satisfies 72 — 7 —
1 = 0. The other root of this quadratic is —1/7 which is in the desired interval.
The continued fraction of 7 is =1 +[1,1,1,1,...], so 1/7 has the continued
fraction [1,1,1,1,...], which shows that 1/7 is a point of period 1 of the Gauss
map. We will return to this example later.

There are general results in the theory of chaotic dynamical systems, with which
we could hope to establish the character of the set of periodic points of the Gauss
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map (Saarkovskii [1964], Stefan [1977], Li and Yorke [1975]). However, these
results deal with the characterisation of the behaviour of continuous maps of the
interval, extended by Block to maps of the circle (Block [1980]), and the Gauss map
has a singularity at the origin. Thus the hypotheses of these theorems are not weak
enough to apply. However, the results of these theorems hold, as will be seen by
direct methods.

We note here that there are infinitely many points of each period. For example,
[n,ny...,04, 0,0, ...,0,...] has period k, for any choice of integers
ny, n,,...,n,. Having points of arbitrary period is one characteristic of a chaotic
map (Li and Yorke [1975]). However, we would like to see if the map is sensitive to
initial conditions (SIC) in that nearby initial points have orbits that separated at an
exponential rate. This again can be established in an elementary fashion by using a
classical result.

Theorem (Lagrange). y has an ultimately periodic continued fraction, which means
that vy =la,a,, a5, ...,8,0 1,0y ... g, Ny, Ryy ey Ny, ... | with transients
a,,a,,as,...,a; at the start of a periodic continued fraction, if and only if vy is a
quadratic irrational (y is a root of a quadratic with integer coefficients).

Corollary. The Gauss map is S.1.C.

For a proof of Lagrange’s theorem, see Hardy and Wright [1979). To prove the
corollary, we note that every rational initial point is “attracted” to the artificial
fixed point at 0, while every quadratic irrational is ultimately “attracted” to a
periodic orbit. Both sets are dense in the interval [0, 1). The rate of separation may
be checked by considering all points in a small interval I, of width e. By the
pigeonhole principle, this interval must contain a rational number of the form
p/n, where n is the smallest integer larger than 1/e. The number of iterations of
the Gauss map required to reach zero for this initial point is, by the speed of the
Euclidean algorithm, O(log(n)), and thus O(log(e)). To construct a specific initial
point in this interval that does something different under G, first expand p /» into
its finite continued fraction: p/n = [a,, a,, a,, ..., a;). Then for large enough N,
the following infinite continued fraction is the continued fraction expansion of a
point in I: [a,,a,,4,...,a;,, N,1,1,1,1,...]. Clearly, the orbit of G starting at
this initial point winds up on the fixed point at 1/7. Q.E.D.

Aperiodic Points. Of course, non-quadratic irrationals have continued fraction
expansions, too. By Lagrange’s theorem, these continued fractions are aperiodic,
and hence the orbit of these initial points under the Gauss map is aperiodic. Note
that most numbers in [0,1) are thus aperiodic. We examine some beautiful
examples, beginning with one due to Euler:

1. e (the base of the natural logarithms) has an aperiodic continued fraction
expansion e = 2 + [1,2,1,1,4,1,1,6,...]. The elements of the orbit of this
initial point are always of the form [1,2N,1,1,...), [2N,1,1,...], or
[1,1,2N,...], which tend to 1, 0, and 1/2, respectively. Thus the w-limit set
of this orbit is the set {1,0, 1 /2}, which, unlike the w-limit sets of continuous
maps, is not invariant under the Gauss map since G(1) = G(1/2) = 0,s0 G
applied to this set simply gives 0. In other words, we have an asymptotically
periodic orbit which is not asymptotic to a real orbit of the map. This cannot
happen for a discrete dynamical system with a continuous map.
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2. (Stark [1971]). If x is the positive root of x> — 3600x? + 120x — 2 = 0, then
x =3599 + [1,28,1,7198, 1,29, 388787400, 23,1, 8998,1, 13,1,
10284,1,2,35400776804,1,1,...]

which has very large entries placed irregularly throughout. This intermittency
is a typical feature of a chaotic system (Guckenheimer and Holmes [1983]).

3. (Lambert, 1770—cf Olds [1963]). The continued fraction for 7 is not known,
in the sense that no pattern has been identified. It begins = =3 +
[7,15,1,292,1,1,1,2,1,3,1,14,2,...] and some 17,000,000 elements of this
continued fraction have been computed by Gosper (Borwein and Borwein,
[1987]). There are many open questions about this continued fraction—for
example, it is not known if the elements of the continued fraction are
bounded.

Lyapunov exponents. We showed earlier that the separation of orbits initially close
to each other occurred at an exponential rate. We would like to examine the
Lyapunov exponents of the Gauss map, to see if we can explicitly measure the rate
of separation. The Lyapunov exponents of orbits of the Gauss map are defined as
(Devaney [1985])

1 n
A(y) = lim —ln(me'w)
n—-x n i=0

whenever this limit exists. Nearby orbits will separate from the orbit of y at an
average rate of e**, after k iterations of G. Khinchin [1963] derived a remarkable
theorem with which we could show the Lyapunov exponent of almost all (in the
sense of Lebesgue measure) orbits can be shown to be 72/6In 2. Easier ways have
since been found to establish this result, using ergodic theory. We summarize the
ergodic results in the next section. In this section we simply note that for any
rational initial point, the above limit does not exist. Further, for any periodic orbit
the calculation can be made explicitly, to give Lyapunov exponents that differ from
the almost-everywhere value. For example, the fixed points @y = [N, N, N, N, ...]
have Lyapunov exponents

May) =2In(1/ay) ~In(N) + N2 = 3N~* + O(N~%)

so that there are orbits with arbitrarily large Lyapunov exponents, i.e., orbits that
are arbitrarily sensitive to perturbations in the initial point. Note also that for the
orbit of e, the limit defining the Lyapunov exponent is infinite. The special case
N =1 gives 7, the golden ratio. Thus A(1/7) = 2In7 = 0.96..., which is smaller
than the almost-everywhere Lyapunov exponent. In fact, we have the following:

Theorem. No orbit of the Gauss map has a Lyapunov exponent smaller than
AM1/7) =2In7.

Proof: Let y = [n, n,, ny,...] be any initial point in (0, 1) such that A(y) exists.
We will show that the product 1. ,(1/y?) which appears in the definition of A(y)
must be at least 72V (for N sufficiently large) which will prove the theorem. We
consider two subsequent elements y, and vy, , of the orbit of y. If kK = N, enlarge
the product by one term. Note vy, and vy, ., are related by y, = 1/(n, . + v, 1)-
If y, < 1/7 then the contribution of y;? to the product is at least 2. If instead
Ye > 1/7 then v, v = Ve /(g + ves) =1 —npyy, < 1 — 9, <
1 — 1/7 = 1/72 so the contribution of 1/y7y7,, to the product is at least 7*. This
proves the theorem.
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Remark. There are infinitely many initial points ¥ in (0,1) with this Lyapunov
exponent. For example, all the numbers y = [n,,n,,n5,...,n;,,1,1,1,1,...], that
is, all the numbers whose continued fractions ultimately end in 1’s, have Lyapunov
exponent 2In 7. These are the so-called noble numbers (Schroeder [1984]), noticed
for their resistance to chaos, and we see here that they all share the (still positive)
minimum possible Lyapunov exponent under the Gauss map.

Ergodic results. The Gauss map is well-known in ergodic theory (see Billingsley
[1963] or Maiié [1987]). The results are summarized here, for contrast with the
results of the sections previous and following. This section is meant more as
incentive for the reader to investigate ergodic theory than as exposition. The Gauss
map preserves the Gauss measure

A ! dA
w( )_E/A1+x ’

where A is the Lebesgue measure. Thus the Gauss map is ergodic, and almost all
(in the sense of either the Lebesgue or Gauss measure) initial points have orbits
which have the interval [0, 1] as w-limit set. Thus the only attractor whose basin of
attraction has nonzero measure is the interval [0, 1]. By the ergodicity of the map,
we may explicitly calculate the Lyapunov exponent as follows:

1({n -2 .1ln(x) 2
A(y) = —21im —| ¥ In(y,)| = — A=
) n (EO n(y')) 2k 1+x ™~ 6m2

=23731...,

which holds for almost all initial points y. This is of interest, since there are few
nontrivial maps for which the Lyapunov exponent can be calculated explicitly.

5. THE FLOATING-POINT GAUSS MAP. All of the results of the previous
sections are valid for the familiar domain of the real numbers. However, when we
work in any fixed-precision system, we have two difficulties:

1. Not all real numbers are even representable in the system, and
2. Arithmetic doesn’t have the properties we are used to.

For example, defining u as the smallest machine representable number which
when added to 1 gives a number different from 1 when stored, we see that G(8) is
computed as 0, whenever § is any number between 0 and u. This effectively limits
the power of the singularity of the Gauss map.

To return to the analogy of the introduction, we consider the domain of
machine representable numbers not as a smooth circle but as a slotted ring, with
the number of slots on the ring corresponding to the number of machine-represen-
table numbers in the interval [0,1), where all numbers in [0,u) are “lumped
together”. In this analogy, u corresponds to the approximate width of the slots.
Now our bead can only occupy one of the slots on the ring, and not just any
arbitrary position, and the floating-point Gauss map takes the bead from one slot,
winding around the ring as many times as are indicated by the integer part, and
finally putting the bead into another slot. We see now that the maximum winding
number of the floating-point Gauss map is finite, and the slot next to the origin is
the one with this winding number.

A more evident difficulty is that all of the representable points are rational, and
we know that the exact Gauss map takes these initial points to zero eventually. So
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if we define a floating-point Gauss map as

0 ifx=0

G(x) = < mod 1 otherwise.

where now the operations of division and “mod 1” take place over the floating-point
domain, with attendant roundoff error, we have to answer some new dynamical
questions:

1. Are there any orbits which don’t go to 0?

2. Is the behaviour of the floating-point Gauss map similar to the exact Gauss
map? In particular, is G chaotic?

3. Can we define an appropriate Lyapunov exponent for this map?

4. Is numerical work with G useful at all for study of G?

Not surprisingly, some orbits under G do terminate at 0, though often not when
we expect them to. However, on some machines, some orbits never hit 0, being
periodic. For example on the HP28S the initial point y, = 0.3 gives y, =
0.3333333333, y, = 0.0000000003, and y, = 0.3 = y,, with period 3. Note that
under the exact Gauss map the second iterate (y,) of this initial point is zero.
Since the set of machine-representable numbers is finite, all orbits are ultimately
periodic (perhaps with period 1, as at x = 0). Note that the behaviour of G
depends strongly on the floating-point implementation. For example, with the
Apple SANE numerics implementation, the starting point y, = 0.3 gives an orbit
with either a long transient regime or a long period, with no regularity detected in
the first 65,000 elements of the orbit.

Since all orbits are ultimately periodic, and there are only a finite number of
such orbits, the floating-point Gauss map (and indeed any machine simulation of
any dynamical system) is not chaotic in the usual sense. Arbitrarily small perturba-
tions in the initial conditions are not even allowed, so the sensitivity of the map to
such perturbations is moot. The definition of the Lyapunov exponent for the exact
Gauss map seems not to be relevant here: the presence of the derivative G'(x) in
the definition of Lyapunov exponent measures the effect of such arbitrarily small
perturbations. However, if we define an approximate Lyapunov exponent for the
first N iterations of the floating point Gauss map as

1 N o
An(y) = _ln(an,('YiN)v

N \ico
whenever the elements of the orbit are nonzero, then this in some sense measures
the average sensitivity of the first N elements of the corresponding orbit under the
exact Gauss map to arbitrarily small perturbations. This “Lyapunov exponent” is
what is calculated in practice for a great many numerical simulations of dynamical
systems, and if it is positive this is taken as evidence for chaos in the underlying
system (Guckenheimer and Holmes [1985]).

But what if the calculated orbit has no counterpart in the exact system? If
roundoff errors introduced into the calculation produce an orbit that is unlike any
in the exact system, this approximate Lyapunov exponent would be spurious. We
will give a proof in the following section, which uses the techniques of backward
error analysis, that shows orbits under the floating-point Gauss map are “machine
close” to corresponding orbits under the exact Gauss map. A general theorem of
this nature has been proved for hyperbolic invariant sets, by Bowen (Guckenheimer

210 R. M. CORLESS [March



& Holmes [1985]). Here a direct proof is more appropriate and informative. This
means that the approximate Lyapunov exponent defined above will accurately
reflect the Lyapunov exponent of some orbit of the exact Gauss map, provided N
is large enough that transient effects have been minimized, and not so large that
accumulated roundoff error in the sum degrades the resuit.

We contrast this behaviour with what happens when continuous maps are made
discrete by (e.g.) finite difference schemes. Yamaguti & Ushiki [1981] and Ushiki
[1982] have shown that finite difference formulae applied to non-chaotic continu-
ous systems may produce chaotic numerical solutions if the stepsize 4 is not too
small, assuming the calculations are carried out exactly. In contrast we have shown
here that a chaotic discrete map becomes nonchaotic when implemented in
fixed-precision arithmetic.

A further difficulty is that all of the orbits of G are ultimately periodic, and
periodic orbits of G have Lyapunov exponents that are different from the almost-
everywhere value (which is usually the exponent of physical interest). It is not
immediately clear that these Lyapunov exponents calculated from G will tell us
anything useful about the exact map G.

On closer examination, however, we see that if the period of an orbit is long,
then the orbit behaves for a long time as if it were aperiodic, reflecting the effect
of “nearby” initial points that are aperiodic. Hence we may expect that the
computed Lyapunov exponent of a long period orbit will be close to (72/6)In2 =
2.373... . This is what happens in practice, since many initial points seem to give
long period orbits. For example, if we compute the first 100,000 elements of the
orbit of 0.73 under G on the HP28S, we get a computed A = 2.36992. This is
within 0.2% of the expected value of the Lyapunov exponent of the exact Gauss
map. Notice, though, that the Lyapunov exponent of the orbit of the exact map G
starting at 0.73 is not even defined—we rely on the roundoff error to give us our
results, which is somewhat unusual. We will expand more on this in a later section,

Orbits under G are close to orbits under G. The following theorem justifies the
remarks of the previous section. The basic idea of its proof is that given some
initial point y the floating-point Gauss map also generates an initial point y
whose continued fraction is exactly equal to [a,, a,, a5, ... ], where the a, are all
(machine representable) integers. This initial point y has a G-orbit that is
everywhere within a small multiple of u, the machine epsilon, of the G-orbit of y.
The technique of the proof is of interest for more than just the Gauss map,
because similar techniques can be used to prove that numerical simulations of
orbits of some continuous systems are machine close to exact orbits of some nearby
initial point (for a descriptive review of work by Yorke, Grebogi, and Hammel
establishing similar results for continuous maps see Cipra [1988)]).

Theorem. If x,, X, X5, X5,... is the sequence of iterates of G, and a,,a,,ds,... is
the sequence of (machine representable) integers that arise in the process, then
y = lay, a5, a;5,...1 has an orbit under G whose elements are close to
X, X15 X35 X3,... in a sense to be made precise, and, in particular, y is close to x,.

We will show first that we may approximate an element of the orbit of y by a
certain rational number. We then show, using a common model of floating-point
arithmetic, that the corresponding x, is “machine close” to this same rational
number. This last will be seen to depend on the fact that if you run the Gauss map
backwards, errors are damped instead of amplified.
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Proof: Consider y, =[ay,,a;,,,0;,3...]. The rational numbers p,/q, =
(Bhst Qi Qieiss o5 Ay, ] satisfy

1
<=

n

Dy
V., — —
k q,

and g, > F, where F, is the nth Fibonnacci number, from elementary proper-
ties of simple continued fractions (see Olds [1963] or Hardy and Wright
[1979] for details). This means that given an & > 0, we can find an »n so that
lyi = Po/aql <e.

To prove the second part, we use the common model of floating-point division
that states that if the floating point numbers a, b, and ¢ satisfy a +~ b = ¢, where
the division takes place over the floating-point numbers, then there is a number &
with |8] <u so that ¢(1 + 8) = a/b exactly. Note that we do not model the
addition, since this will be seen to be unnecessary.

If the orbit xg, x;, x,, x5,... has been produced by a floating-point system
satisfying this model, then for each n there is a number §, ., with [, .,/ < usuch
that

1

(1+ Skin)Xiin = + ’
ktn+1 T Xpan+1

where we may consider the addition as exact, since a,,, ., is a machine repre-
sentable integer, defined by this process, and x,,,.; is a machine representable
floating point number. If we put &,,, . = X;,,41/@ +n+1 then we have

1
(U epane D)L+ 84 ) Xpern = .
Apsrn+l
Now put z; ., = [Gg it Thsmezs Qpamasre-r@ponser] for m=1,2,... n, and
PUt €4, = Zjam — Xpam for m=0,1,2,... n. Note that ¢, =z, —x, is the

error we wish to estimate, since by the first part we can estimate the error z, — y,.
So now

1 1
(1 + 8k+m)xk+m = + = + _
k+m+1 7 Xk+m+1 Apvm+1 T Zktm+1 ~ Ck+m+1

1

= Zk+m : 1 — .
Ektm+1  Zk+m

from whence, on cross-multiplying and expanding, we get the recurrence relation

Ekem = OkamXhaem — (1 F 8kim) ZksomXkemEk+m+1

from which we may derive an upper bound on ¢, = z, — x,, and we note at this
point that z, is one of the rationals which approximates y,. Note that the first
term in this recurrence relation is essentially the roundoff error introduced at this
particular step, while the second term is the error from one level below in the
continued fraction, multiplied by a “shrinkage factor” z, ., X, . .-

As in the proof that 7 has the minimum Lyapunov exponent, we are unable to
say anything useful about z,,, directly, but we are able to bound z,.,,2z;,mi1s
which is easily shown to be less than 1/2. With some simple estimates on the
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above recurrence this gives

1-4u )
4U+m n — misodd

£k+m< 1-3[1 .
4u+W n — m is even

and since as n — %, z, - y,, we have at last

lx, — vl < du

Thus there is a nearby initial point y, whose orbit under G follows as near as can
be expected the computed orbit x, x|, x5, x3,... of the floating-point Gauss map.

Our earlier example of x, = 0.3 gave a periodic orbit on the HP28S, which has
u = 107!, The nearby initial point with this orbit under G is

[3,3,3333333333,3,3,...]

y

1
) (\/1 111111111128888888889 — 33333333333)

0.3 + .2999999999976 - 10~ 12 + - --

As a further curiosity, we note that the machine representation of 1/7 on the
HP28S is an actual fixed point of G allowing us to calculate the exact continued
fraction of 1/7 on a finite machine.

A New method for calculating w. The observation that we can get an approximate
value for the Lyapunov exponent of the exact Gauss map by calculating the
average exponent from the first N elements of a numerically generated orbit gives
us a new and interesting, though completely impractical, method for calculating .
We simply choose some initial point more or less at random, say x, = 0.73, and
produce the first N iterates under the floating-point Gauss map, and accumulate
the average Lyapunov exponent. At the end, this is supposed to be close to the
exact almost-everywhere Lyapunov exponent of the exact Gauss map, 72/6In2 =
2.373... . Well, if we know In2 and can take square roots, this gives us the value
of 7. Using the HP28S and 100,000 iterates of the floating-point Gauss map with
the above initial point, we get 7 = 3.13945. Note that this method relies on
roundoff error, since without it this orbit terminates!

Remarks. This method is likely worse than nearly any other in existence, since it
does not converge to the correct value in any particular fixed-precision system,
since all orbits are ultimately periodic, and the Lyapunov exponent of a periodic
orbit is the logarithm of an algebraic number, which can’t be 72 unless e™ is an
algebraic number?. Yet this qualifies as a genuine method, since in principle you
could implement higher and higher precision floating-point systems and achieve
the desired accuracy by longer and longer runs with this high-precision arithmetic.
Of course this is impractical, perhaps even ridiculous. There is also the problem of
choosing “good” initial points—if we are lucky, the first initial point we choose for
whatever floating-point system we have will do the trick—but there is no guaran-
tee, and indeed the computed Lyapunov exponent may converge to something
totally different (or worse, something only slightly different).

2This is a well known unsolved problem.

1992] CONTINUED FRACTIONS AND CHAOS 213



This method is clearly related to the Monte Carlo methods, with the roundoff
error associated with the floating-point arithmetic playing the part of the random
number generator required. The author knows of no other case in mathematics
where roundoff error plays a useful role in an actual calculation.

6. CONCLUSIONS. The Gauss map has been shown to be a good example of a
chaotic discrete dynamical system, in that it exhibits in an accessible fashion all the
common features of such systems. The map is simple enough that the relationship
of numerical simulation of the map to the exact map can be explored effectively.
We find that the numerical simulation of the map behaves significantly differently,
in that the numerical simulation is not chaotic, but is still useful in that the
Lyapunov exponent of the exact map can be accurately calculated from the
simulation. We have in fact shown that this behaviour of numerical simulation is
general. We have also exhibited a new (though impractical) method for the
calculation of .
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