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Continued Fractions and Chaos 

R. M. Corless 

1. INTRODUCTION. This paper is meant for the reader who knows something 
about continued fractions, and wishes to know more about the theory of chaotic 
dynamical systems; 1 it is also useful for the person who knows something about 
chaotic dynamical systems but wishes to see clearly what the effects of numerical 
simulation of such a system are. This paper is not purely introductory, however: 
there are new dynamical systems results presented here and also in the companion 
paper (Corless, Frank & Monroe [1989]), which presents some discussion of 
dynamical reconstruction techniques and dimension estimates. 

The theory of continued fractions goes back at least to c. A.D. 500 to the work of 
Aryabhata, and possibly as far back as c. 300 B.c. to Euclid. The theory of chaotic 
dynamical systems is relatively recent, going back only to the work of Poincare 
[1899] and Birkhoff [1932]. The foundations of the theory of continued fractions, as 
we know it now, are well established due to the work of Euler, Lagrange, Gauss, 
and others, while the foundations of chaotic dynamical systems are still evolving. 
This paper will use the well-established theory of simple continued fractions to 
explore some current results of the theory of chaotic dynamical systems. 

Olds [1963] gives a good introduction to the classical theory of simple continued 
fractions, by which we mean continued fractions of the form 

1 
no + -------::1---

nz + ----
n3 + ... 

where the ni are all positive integers, except n 0 which may be zero or negative. We 
will denote this as n 0 + [n 1, n 2 , n 3 , ••• ], and in what follows n0 will usually be 
zero. Simple continued fractions have found applications in Fabry-Perot interfer­
ometry (Ikeda & Mizuno [1984]), and the concept of "noble" numbers used in 
orbital stability and quasi-amorphous states of matter (Schroeder, [1984]). For 
other uses of simple continued fractions in chaos, see Devaney [1985]. Other types 
of continued fraction exist, for example, Gautschi [1970], Henrici [1977], Jones and 
Thron [1980], and others, use functional or analytic continued fractions in approxi­
mation theory, since analytic continued fractions can be very effective for computa­
tion. We will not be concerned with such continued fractions. We will summarize 
in the next section all the classical results that we need, without proof. Proofs can 
be found in Olds [1963], Hardy and Wright [1979], Niven [1956], Khinchin [1963], 
Billingsley [1963], and Mane [1987]. 

1 One referee has remarked that "This describes the referee, who admits to having found the paper 
interesting. Though, I suspect, now, more people know about chaos than continued fractions." The 
author is inclined to agree, and hopes that this paper will interest some of these people in continued 
fractions. 
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2. SUMMARY OF CLASSICAL RESULTS 

The Gauss Map. We begin with the classical method for finding the continued 
fraction representation of a number y. We put n0 equal to the integer part of y, 
by which we mean the greatest integer less than or equal to 'Y. If the fractional part 
of 'Y is not zero, we put 'Yo equal to the fractional part of y. We then invert y 0 , 

and put n 1 equal to the integer part of 1/y0 . Similarly we put y 1 equal to the 
fractional part, and repeat. Note that n0 may be positive, negative, or zero, but 
that all the subsequent n; will be positive, and that each 'Y; is in the interval [0, 1). 
This process gives us unique continued fraction for each starting point 'Y, and the 
process terminates if and only if 'Y is rational. (For any rational 'Y there is one 
other simple continued fraction which is only trivially different from the one 
generated by this algorithm.) This algorithm is related to the Euclidean algorithm 
for finding the greatest common divisor (gcd) of two integers k and m (Olds 
[1963]), in that if we use this method to find the continued fraction of kjm, then 
the integer parts that arise are precisely the quotients that arise in the Euclidean 
algorithm, and in fact the last nonzero remainder from the Euclidean algorithm 
appears as the numerator of the last nonzero fractional part. This remainder is of 
course the gcd of k and m. Further, this algorithm can easily be seen to terminate 
in O(log(min(k, m))) operations. Classically, most attention has been paid to the 
integers generated by this algorithm, which make up the continued fraction itself. 
However, Gauss was apparently the first to study the other part of this algorithm, 
which we present as the following map, called the Gauss map (Mane [1987]) (see 
FIGURE 1): 

G(x) = {

0
1 - mod1 
X 

if X= 0 

otherwise. 

O·fd H ~ 

Figure 1. The graph of the Gauss Map G(x). Note that there are an infinite number of jump 
discontinuities at values of x = ljn, for integers n. In addition, there is a pole at the origin. The 
darkening of the curve towards the origin is suggestive of the fractional nature of the capacity 
dimension. 

We use the notation "mod 1" to mean taking the fractional part. In terms of the 
Gauss map G, our algorithm then becomes 

'Yk+l =fractional part of 1/'Yk = G( 'Yd 

nk+ 1 = integer part of 1/'Yk, for k = 0, 1, 2, 3, ... 

and we see that the continued fraction is generated as a byproduct of the iteration 
of the Gauss map. Thus we expect that any classical results on continued fractions 
will have implications for the dynamics of the Gauss map. 
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Note that the jump discontinuities occuring at x = 1/n (for each integer n) may 
all be removed by mapping onto the circle with the transformation e21Tix. After this 
is done, we see that the Gauss map (eZrrix -+ e 2 rri fx) is a map of the circle onto the 
circle, and may be pictured on a torus, as in FIGURE 2. The singularity at the origin 
is not removed by this transformation. For convenience, the singularity is dealt 
with by artificially making zero a fixed point of the map (this makes our difficulties 
no worse). Most theorems on the dynamics of discrete maps assume continuity, 
which is thus violated here. 

Figure 2. The graph of the Gauss Map G( x) on the torus. Note that all the jump discontinuities have 
been removed, but that the pole at the origin remains. The darkening of the curve towards the 
singularity again gives an idea of the fractional nature of the capacity dimension. 

We make the following observation: if we represent a point in the interval 
[0, 1) by its continued fraction, "Yo = [n 1, n 2 , n 3 , •• • ], then a simple induction shows 
that G(-y0 ) = y 1 = [n 2 ,n 3,n 4 , ••• ], G(y 1) = y 2 = [n 3 ,n 4 ,n 5 , ••• ], G(y2 ) = y 3 = 

[n 4 , n5 , n 6 , ..• ], and so on. This makes a connection between the Gauss map and 
the "shift map" of symbolic dynamics (Devaney, 1985). We will not explore this 
connection further here, but we note that the shift maps normally studied are 
slightly different than the Gauss map, in that here the size of the numbers in the 
list being "shifted" is not bounded. 

An analogy is illuminating: if we think of our space as a circular hoop with the 
origin at one point 0 on the hoop, our initial point as a dimensionless bead on the 
hoop, and the Gauss map is taking the bead from its current position clockwise 
past 0 at least once to its next position on the hoop, then the integers ni are the 
number of times the bead passes 0 on the ith iteration (in general the maximum 
such number is called the "winding number" of the map, and here this is obviously 
infinite), and the "Yi are the coordinates of the bead on the hoop once it comes to 
rest. If the bead comes to rest close to the origin on one side, with a small "Yi• then 
on the next iteration it will be pushed many times around the hoop. If it comes to 
rest close to the origin on the other side, with a "Yi close to 1, then it will only go 
past the origin once on its next iteration. We may think of the bead as being 
pushed around the circle, with the strength of the push being inversely propor­
tional to the distance measured counterclockwise from the point 0. 

3. DYNAMICAL SYSTEMS TERMINOLOGY. In what follows we give a compact 
introduction to the terminology used in the study of discrete dynamical systems. 
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For more details, see Devaney [1985]. To begin with, a discrete dynamical system 
is a recurrence relation x k + 1 = G( x k ), with the index k playing the role of a 
discrete "time". Note that the points xk may be multi-dimensional. The sequence 
{xk}~~o is called the orbit of the initial point x 0 under the map x ~ G(x), and is 
denoted as orb(x0). Any points x that satisfy x = G(x) are called fixed points of 
the map, and more generally if x = Gn(x) where Gn(x) = G(Gn- 1(x)) then x is 
called a periodic point of the map. If N is the least such number n, then as usual 
we say x has period N. The a-limit set of orb(x0 ) is the set of all initial points 
whose orbits approach orb(x 0 ) as "time" increases; to be precise, an initial point 
y 0 is in the a-limit set of orb(x0 ) if there exist m and n such that for all s > 0 
there exists K such that k ~ K implies lxm+k - Yn+kl < s. The w-limit set of 
orb(x0 ) is the set of accumulation points of orb(x0 ). An attractor of a map is a set 
of points which "attracts" orbits, from some set of initial points of nonzero 
probability of being selected. To be precise, an attractor of a map is an indecom­
posable closed invariant set A with the property that, given s > 0, there is a set U 
of positive Lebesgue measure in the s-neighbourhood of A such that if x is in U 
then the w-limit set of orb(x) is contained in A and the orbit of x is contained in 
U (Guckenheimer & Holmes, [1983]). An invariant set is a set such that G(A) =A, 
and an indecomposable set is one which cannot be broken into two or more pieces 
which are distinct under G. A map G is said to be sensitive to initial conditions 
(SIC) if initially close initial points have orbits that separate at an exponential rate. 
A map that is SIC is also said to be chaotic. The possible average exponents of 
these rates of separation are called the Lyapunov exponents of the map. Osledec's 
theorem (Osledec, [1968]) states that for a wide class of maps, and for almost all 
initial points, there are only finitely many possible Lyapunov exponents (in fact, 
only n for an n-dimensional map). 

4. CLASSICAL RESULTS INTERPRETED IN DYNAMICAL SYSTEMS TERMI­
NOLOGY PERIODIC AND FIXED POINTS OF THE GAUSS MAP. The follow­
ing classical theorem, interpreted in a modern dynamical sense, identifies the fixed 
and periodic points of the Gauss map. 

Theorem (Galois). The number y has a purely periodic continued fraction, including 
the first integer n 0 , if and only if y is a "reduced quadratic irrational", which means 
that y is a root of a quadratic equation with integer coefficients and, further, that its 
algebraic conjugate (i.e. the other root of the quadratic) lies in the interval ( -1, 0). 

Corollary. The periodic points of the Gauss map are the reciprocals of the reduced 
quadratic irrationals. 

For a proof of the theorem, see Olds [1963], or Hardy and Wright [1979]. To prove 
the corollary, we note that y = [n 1, n 2 , n 3 , ••• ] is periodic under the Gauss map if 
and only if its continued fraction is periodic, starting at n 1, by the shift property 
mentioned in the previous section. 

An example of particular interest is r, the golden ratio, which satisfies r 2 
- r -

1 = 0. The other root of this quadratic is -1/r which is in the desired interval. 
The continued fraction of r is r = 1 + [1, 1, 1, 1, ... ], so 1/r has the continued 
fraction [1, 1, 1, 1, ... ], which shows that 1/r is a point of period 1 of the Gauss 
map. We will return to this example later. 

There are general results in the theory of chaotic dynamical systems, with which 
we could hope to establish the character of the set of periodic points of the Gauss 
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map (Saarkovskii [1964], Stefan [1977], Li and Yorke [1975]). However, these 
results deal with the characterisation of the behaviour of continuous maps of the 
interval, extended by Block to maps of the circle (Block [1980]), and the Gauss map 
has a singularity at the origin. Thus the hypotheses of these theorems are not weak 
enough to apply. However, the results of these theorems hold, as will be seen by 
direct methods. 

We note here that there are infinitely many points of each period. For example, 
[n 1, n 2 , ••• , nk, n 1, n 2 , ••• , nk, ... ] has period k, for any choice of integers 
n 1, n 2 , ••• , nk. Having points of arbitrary period is one characteristic of a chaotic 
map (Li and Yorke [1975]). However, we would like to see if the map is sensitive to 
initial conditions (SIC) in that nearby initial points have orbits that separated at an 
exponential rate. This again can be established in an elementary fashion by using a 
classical result. 

Theorem (Lagrange). y has an ultimately periodic continued fraction, which means 
that y = [a 1, a2 , a3 , ••• , a;, n 1, n 2 , ••• , nk, n 1, n 2 , ••• , nk, ... ] with transients 
a 1, a 2 , a3 , ••. , a; at the start of a periodic continued fraction, if and only if y is a 
quadratic irrational ( y is a root of a quadratic with integer coefficients). 

Corollary. The Gauss map is S.I.C. 

For a proof of Lagrange's theorem, see Hardy and Wright [1979]. To prove the 
corollary, we note that every rational initial point is "attracted" to the artificial 
fixed point at 0, while every quadratic irrational is ultimately "attracted" to a 
periodic orbit. Both sets are dense in the interval [0, 1). The rate of separation may 
be checked by considering all points in a small interval /, of width s. By the 
pigeonhole principle, this interval must contain a rational number of the form 
p jn, where n is the smallest integer larger than 1/s. The number of iterations of 
the Gauss map required to reach zero for this initial point is, by the speed of the 
Euclidean algorithm, O(log(n)), and thus O(log(s)). To construct a specific initial 
point in this interval that does something different under G, first expand p jn into 
its finite continued fraction: p jn = [a 1, a2 , a3 , ••• , aJ Then for large enough N, 
the following infinite continued fraction is the continued fraction expansion of a 
point in /: [a 1, a2 , a 3 , ••• , a;, N, 1, 1, 1, 1, ... ]. Clearly, the orbit of G starting at 
this initial point winds up on the fixed point at 1/T. Q.E.D. 

Aperiodic Points. Of course, non-quadratic irrationals have continued fraction 
expansions, too. By Lagrange's theorem, these continued fractions are aperiodic, 
and hence the orbit of these initial points under the Gauss map is aperiodic. Note 
that most numbers in [0, 1) are thus aperiodic. We examine some beautiful 
examples, beginning with one due to Euler: 

1. e (the base of the natural logarithms) has an aperiodic continued fraction 
expansion e = 2 + [1, 2, 1, 1, 4, 1, 1, 6, ... ]. The elements of the orbit of this 
initial point are always of the form [1, 2N, 1, 1, ... ], [2N, 1, 1, ... ], or 
[1, 1, 2N, ... ], which tend to 1, 0, and 1/2, respectively. Thus the w-limit set 
of this orbit is the set {1, 0, 1/2}, which, unlike the w-limit sets of continuous 
maps, is not invariant under the Gauss map since G(l) = G(lj2) = 0, so G 
applied to this set simply gives 0. In other words, we have an asymptotically 
periodic orbit which is not asymptotic to a real orbit of the map. This cannot 
happen for a discrete dynamical system with a continuous map. 
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2. (Stark [1971]). If x is the positive root of x 3 
- 3600x 2 + 120x - 2 = 0, then 

X= 3599 + (1,28,1, 7198,1,29,388787400,23,1,8998,1,13,1, 

10284,1,2,35400776804,1,1, ... ] 

which has very large entries placed irregularly throughout. This intermittency 
is a typical feature of a chaotic system (Guckenheimer and Holmes [1983]). 

3. (Lambert, 1770-cf Olds [1963]). The continued fraction for 7T is not known, 
in the sense that no pattern has been identified. It begins 7T = 3 + 
[7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, ... ] and some 17,000,000 elements of this 
continued fraction have been computed by Gasper (Borwein and Borwein, 
[1987]). There are many open questions about this continued fraction-for 
example, it is not known if the elements of the continued fraction are 
bounded. 

Lyapunov exponents. We showed earlier that the separation of orbits initially close 
to each other occurred at an exponential rate. We would like to examine the 
Lyapunov exponents of the Gauss map, to see if we can explicitly measure the rate 
of separation. The Lyapunov exponents of orbits of the Gauss map are defined as 
(Devaney [1985]) 

A(y) = J~oo~rn(}]IG'(y;)l) 
whenever this limit exists. Nearby orbits will separate from the orbit of y at an 
average rate of eAk, after k iterations of G. Khinchin [1963] derived a remarkable 
theorem with which we could show the Lyapunov exponent of almost all (in the 
sense of Lebesgue measure) orbits can be shown to be 1r

2 j6In 2. Easier ways have 
since been found to establish this result, using ergodic theory. We summarize the 
ergodic results in the next section. In this section we simply note that for any 
rational initial point, the above limit does not exist. Further, for any periodic orbit 
the calculation can be made explicitly, to give Lyapunov exponents that differ from 
the almost-everywhere value. For example, the fixed points aN= [N, N, N, N, ... ] 
have Lyapunov exponents 

A( aN)= 2ln(1/aN)- ln(N) + N- 2
- ~N- 4 + O(N- 6

) 

so that there are orbits with arbitrarily large Lyapunov exponents, i.e., orbits that 
are arbitrarily sensitive to perturbations in the initial point. Note also that for the 
orbit of e, the limit defining the Lyapunov exponent is infinite. The special case 
N = 1 gives T, the golden ratio. Thus AO/r) = 2ln T = 0.96 ... , which is smaller 
than the almost-everywhere Lyapunov exponent. In fact, we have the following: 

Theorem. No orbit of the Gauss map has a Lyapunov exponent smaller than 
AO/r) = 2ln r. 

Proof' Let y = [np n 2 , n3, .•• ] be any initial point in (0, 1) such that A( y) exists. 
We will show that the product 0;':, 0(1jyl) which appears in the definition of A( y) 
must be at least r 2

N (for N sufficiently large) which will prove the theorem. We 
consider two subsequent elements Yk and Yk+l of the orbit of y. If k = N, enlarge 
the product by one term. Note Yk and Yk+l are related by Yk = 1/(nk+I + Yk+ 1). 

If Yk .,;; 1/r then the contribution of y; 2 to the product is at least r 2
• If instead 

Yk > 1/r then Yk. Yk+I = Yk+Ij(nk+l + Yk+I) = 1 - nk+II'k .,;; 1 - Yk < 
1 - 1/r = ljr 2 so the contribution of 1/yJyJ+ 1 to the product is at least r 4

• This 
proves the theorem. 
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Remark. There are infinitely many initial points y in (0, 1) with this Lyapunov 
exponent. For example, all the numbers y = [n 1, n 2 , n 3 , ••• , nk, 1, 1, 1, 1, ... ], that 
is, all the numbers whose continued fractions ultimately end in 1 's, have Lyapunov 
exponent 2ln r. These are the so-called noble numbers (Schroeder [1984]), noticed 
for their resistance to chaos, and we see here that they all share the (still positive) 
minimum possible Lyapunov exponent under the Gauss map. 

Ergodic results. The Gauss map is well-known in ergodic theory (see Billingsley 
[1963] or Mane [1987]). The results are summarized here, for contrast with the 
results of the sections previous and following. This section is meant more as 
incentive for the reader to investigate ergodic theory than as exposition. The Gauss 
map preserves the Gauss measure 

1 1 
J.L(A) = -!-dA, 

In 2 A 1 + x 

where A is the Lebesgue measure. Thus the Gauss map is ergodic, and almost all 
(in the sense of either the Lebesgue or Gauss measure) initial points have orbits 
which have the interval [0, 1] as w-limit set. Thus the only attractor whose basin of 
attraction has nonzero measure is the interval [0, 1]. By the ergodicity of the map, 
we may explicitly calculate the Lyapunov exponent as follows: 

A( 'Y) = -2 lim - E In( 'Y;) = - r -- dA = -- = 2.3731. .. ' 
1 ( n ) - 2 1 In( X) 7T

2 

n-->oo n i~O ln2 lo 1 +X 6ln2 

which holds for almost all initial points y. This is of interest, since there are few 
nontrivial maps for which the Lyapunov exponent can be calculated explicitly. 

5. THE FLOATING-POINT GAUSS MAP. All of the results of the previous 
sections are valid for the familiar domain of the real numbers. However, when we 
work in any fixed-precision system, we have two difficulties: 

1. Not all real numbers are even representable in the system, and 
2. Arithmetic doesn't have the properties we are used to. 

For example, defining u as the smallest machine representable number which 
when added to 1 gives a number different from 1 when stored, we see that G(8) is 
computed as 0, whenever 8 is any number between 0 and u. This effectively limits 
the power of the singularity of the Gauss map. 

To return to the analogy of the introduction, we consider the domain of 
machine representable numbers not as a smooth circle but as a slotted ring, with 
the number of slots on the ring corresponding to the number of machine-represen­
table numbers in the interval [0, 1), where all numbers in [0, u) are "lumped 
together". In this analogy, u corresponds to the approximate width of the slots. 
Now our bead can only occupy one of the slots on the ring, and not just any 
arbitrary position, and the floating-point Gauss map takes the bead from one slot, 
winding around the ring as many times as are indicated by the integer part, and 
finally putting the bead into another slot. We see now that the maximum winding 
number of the floating-point Gauss map is finite, and the slot next to the origin is 
the one with this winding number. 

A more evident difficulty is that all of the representable points are rational, and 
we know that the exact Gauss map takes these initial points to zero eventually. So 
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if we define a floating-point Gauss map as 

6(x) = {

0
1 
-mod 1 
X 

if X= 0 

otherwise. 

where now the operations of division and "mod 1" take place over the floating-point 
domain, with attendant roundoff error, we have to answer some new dynamical 
questions: 

1. Are there any orbits which don't go to 0? 
2. Is the behaviour of the floating-point Gauss map similar to the exact Gauss 

map? In particular, is 6 chaotic? 
3. Can we define an appropriate Lyapunov exponent for this map? 
4. Is numerical work with 6 useful at all for study of G? 

Not surprisingly, some orbits under 6 do terminate at 0, though often not when 
we expect them to. However, on some machines, some orbits never hit 0, being 
periodic. For example on the HP28S the initial point y 0 = 0.3 gives y 1 = 

0.3333333333, y 2 = 0.0000000003, and y 3 = 0.3 = y 0 , with period 3. Note that 
under the exact Gauss map the second iterate ( y 2 ) of this initial point is zero. 
Since the set of machine-representable numbers is finite, all orbits are ultimately 
periodic (perhaps with period 1, as at x = 0). Note that the behaviour of 6 
depends strongly on the floating-point implementation. For example, with the 
Apple SANE numerics implementation, the starting point y 0 = 0.3 gives an orbit 
with either a long transient regime or a long period, with no regularity detected in 
the first 65,000 elements of the orbit. 

Since all orbits are ultimately periodic, and there are only a finite number of 
such orbits, the floating-point Gauss map (and indeed any machine simulation of 
any dynamical system) is not chaotic in the usual sense. Arbitrarily small perturba­
tions in the initial conditions are not even allowed, so the sensitivity of the map to 
such perturbations is moot. The definition of the Lyapunov exponent for the exact 
Gauss map seems not to be relevant here: the presence of the derivative G'(x) in 
the definition of Lyapunov exponent measures the effect of such arbitrarily small 
perturbations. However, if we define an approximate Lyapunov exponent for the 
first N iterations of the floating point Gauss map as 

AN(Y) = ~ln(t!l6'(yJI), 
whenever the elements of the orbit are nonzero, then this in some sense measures 
the average sensitivity of the first N elements of the corresponding orbit under the 
exact Gauss map to arbitrarily small perturbations. This "Lyapunov exponent" is 
what is calculated in practice for a great many numerical simulations of dynamical 
systems, and if it is positive this is taken as evidence for chaos in the underlying 
system (Guckenheimer and Holmes [1985]). 

But what if the calculated orbit has no counterpart in the exact system? If 
roundoff errors introduced into the calculation produce an orbit that is unlike any 
in the exact system, this approximate Lyapunov exponent would be spurious. We 
will give a proof in the following section, which uses the techniques of backward 
error analysis, that shows orbits under the floating-point Gauss map are "machine 
close" to corresponding orbits under the exact Gauss map. A general theorem of 
this nature has been proved for hyperbolic invariant sets, by Bowen (Guckenheimer 
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& Holmes [1985]). Here a direct proof is more appropriate and informative. This 
means that the approximate Lyapunov exponent defined above will accurately 
reflect the Lyapunov exponent of some orbit of the exact Gauss map, provided N 
is large enough that transient effects have been minimized, and not so large that 
accumulated roundoff error in the sum degrades the result. 

We contrast this behaviour with what happens when continuous maps are made 
discrete by (e.g.) finite difference schemes. Yamaguti & Ushiki [1981] and Ushiki 
[1982] have shown that finite difference formulae applied to non-chaotic continu­
ous systems may produce chaotic numerical solutions if the stepsize h is not too 
small, assuming the calculations are carried out exactly. In contrast we have shown 
here that a chaotic discrete map becomes nonchaotic when implemented in 
fixed-precision arithmetic. 

A further difficulty is that all of the orbits of 6 are ultimately periodic, and 
periodic orbits of G have Lyapunov exponents that are different from the almost­
everywhere value (which is usually the exponent of physical interest). It is not 
immediately clear that these Lyapunov exponents calculated from 6 will tell us 
anything useful about the exact map G. 

On closer examination, however, we see that if the period of an orbit is long, 
then the orbit behaves for a long time as if it were aperiodic, reflecting the effect 
of "nearby" initial points that are aperiodic. Hence we may expect that the 
computed Lyapunov exponent of a long period orbit will be close to ( 1r 2 j6) In 2 = 

2.373 .... This is what happens in practice, since many initial points seem to give 
long period orbits. For example, if we compute the first 100,000 elements of the 
orbit of 0. 73 under 6 on the HP28S, we get a computed A = 2.36992. This is 
within 0.2% of the expected value of the Lyapunov exponent of the exact Gauss 
map. Notice, though, that the Lyapunov exponent of the orbit of the exact map G 
starting at 0.73 is not even defined-we rely on the roundoff error to give us our 
results, which is somewhat unusual. We will expand more on this in a later section. 

Orbits under G are close to orbits under G. The following theorem justifies the 
remarks of the previous section. The basic idea of its proof is that given some 
initial point 9 the floating-point Gauss map also generates an initial point y 
whose continued fraction is exactly equal to [a1, a2 , a3 , •.. ], where the ak are all 
(machine representable) integers. This initial point y has a G-orbit that is 
everywhere within a small multiple of u, the machine epsilon, of the 6-orbit of 9. 
The technique of the proof is of interest for more than just the Gauss map, 
because similar techniques can be used to prove that numerical simulations of 
orbits of some continuous systems are machine close to exact orbits of some nearby 
initial point (for a descriptive review of work by Yorke, Grebogi, and Hammel 
establishing similar results for continuous maps see Cipra [1988]). 

Theorem. If x 0 , x 1, x 2 , x 3 , ••• is the sequence of iterates of 6, and ap a 2 , a3 , ••• is 
the sequence of (machine representable) integers that arise in the process, then 
y = [a 1, a2 , a3 , ••• ] has an orbit under G whose elements are close to 
x 0 , x 1, x 2 , x 3 , ••• in a sense to be made precise, and, in particular, y is close to x 0 • 

We will show first that we may approximate an element of the orbit of y by a 
certain rational number. We then show, using a common model of floating-point 
arithmetic, that the corresponding xk is "machine close" to this same rational 
number. This last will be seen to depend on the fact that if you run the Gauss map 
backwards, errors are damped instead of amplified. 
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Proof Consider Yk = [ak+i' ak+z, ak+ 3, •.. ]. The rational numbers Pn/qn = 
[ak+l' ak+l' ak+ 3 , ••• , ak+n] satisfy 

and qn > Fn where Fn is the nth Fibonnacci number, from elementary proper­
ties of simple continued fractions (see Olds [1963] or Hardy and Wright 
[1979] for details). This means that given an E > 0, we can find an n so that 
IYk - Pn/qnl <E. 

To prove the second part, we use the common model of floating-point division 
that states that if the floating point numbers a, b, and c satisfy a -;-- b = c, where 
the division takes place over the floating-point numbers, then there is a number o 
with lol < u so that c(1 + o) = ajb exactly. Note that we do not model the 
addition, since this will be seen to be unnecessary. 

If the orbit x 0 , x 1, x 2 , x 3 , ... has been produced by a floating-point system 
satisfying this model, then for each n there is a number ok+n with lok+nl < u such 
that 

1 
(1 + 0k+n)xk+n = ------­

ak+n+l + xk+n+l 

where we may consider the addition as exact, since ak+n + 1 is a machine repre­
sentable integer, defined by this process, and xk+n+l is a machine representable 
floating point number. If we put Ek+n+l = xk+n+ 1jak+n+l then we have 

1 
(1 + Ek+n+l)(1 + Ok+n)Xk+n = . 

ak+n+l 

Now put zk+m = [ak+m+l' ak+m+z, ak+m+ 3, ... , ak+n+l] form = 1, 2, ... , n, and 
put Ek+m = zk+m - xk+m for m = 0, 1, 2, ... , n. Note that Ek = zk - xk is the 
error we wish to estimate, since by the first part we can estimate the error z k - y k. 

So now 

1 1 
(1 + ok+m)xk+m = ------­

ak+m+l + xk+m+l ak+m+l + zk+m+l - Ek+m+l 

1 
= 2 k+m. --------

1 - Ek+m+l. 2 k+m 

from whence, on cross-multiplying and expanding, we get the recurrence relation 

from which we may derive an upper bound on E k = z k - x k, and we note at this 
point that zk is one of the rationals which approximates Yk· Note that the first 
term in this recurrence relation is essentially the roundoff error introduced at this 
particular step, while the second term is the error from one level below in the 
continued fraction, multiplied by a "shrinkage factor" zk+mxk+m· 

As in the proof that T has the minimum Lyapunov exponent, we are unable to 
say anything useful about zk+m directly, but we are able to bound zk+mzk+m+P 

which is easily shown to be less than 1/2. With some simple estimates on the 
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above recurrence this gives 

{ 

1- 4u 
4u + n - m is odd 2(n+ 1-m)/2 

sk+m .;;; 1 - 3u 
4u + 

2
<n-m)/2 n - m is even 

and since as n --+ oo, zk --+ yk, we have at last 

ixk - Yki .;;; 4u. 

Thus there is a nearby initial point y 0 whose orbit under G follows as near as can 
be expected the computed orbit x 0, x 1, x 2, x3, ... of the floating-point Gauss map. 

Our earlier example of x 0 = 0.3 gave a periodic orbit on the HP28S, which has 
u = 10- 11

• The nearby initial point with this orbit under 6 is 

y = [3,3,3333333333,3,3, ... ] 

1 
= 2 (v' 1111111111128888888889 - 33333333333) 

= o.3 + .2999999999976. w- 12 + .... 
As a further curiosity, we note that the machine representation of 1/T on the 
HP28S is an actual fixed point of 6, allowing us to calculate the exact continued 
fraction of 1/T on a finite machine. 

A New method for calculating 1r. The observation that we can get an approximate 
value for the Lyapunov exponent of the exact Gauss map by calculating the 
average exponent from the first N elements of a numerically generated orbit gives 
us a new and interesting, though completely impractical, method for calculating 7T. 

We simply choose some initial point more or less at random, say x 0 = 0.73, and 
produce the first N iterates under the floating-point Gauss map, and accumulate 
the average Lyapunov exponent. At the end, this is supposed to be close to the 
exact almost-everywhere Lyapunov exponent of the exact Gauss map, 1r

2 j6Jn 2 = 

2.373 .... Well, if we know In 2 and can take square roots, this gives us the value 
of 7T. Using the HP28S and 100,000 iterates of the floating-point Gauss map with 
the above initial point, we get 1r ::= 3.13945. Note that this method relies on 
roundoff error, since without it this orbit terminates! 

Remarks. This method is likely worse than nearly any other in existence, since it 
does not converge to the correct value in any particular fixed-precision system, 
since all orbits are ultimately periodic, and the Lyapunov exponent of a periodic 
orbit is the logarithm of an algebraic number, which can't be 1r

2 unless err
2 

is an 
algebraic number 2• Yet this qualifies as a genuine method, since in principle you 
could implement higher and higher precision floating-point systems and achieve 
the desired accuracy by longer and longer runs with this high-precision arithmetic. 
Of course this is impractical, perhaps even ridiculous. There is also the problem of 
choosing "good" initial points-if we are lucky, the first initial point we choose for 
whatever floating-point system we have will do the trick-but there is no guaran­
tee, and indeed the computed Lyapunov exponent may converge to something 
totally different (or worse, something only slightly different). 

2 This is a well known unsolved problem. 
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This method is clearly related to the Monte Carlo methods, with the roundoff 
error associated with the floating-point arithmetic playing the part of the random 
number generator required. The author knows of no other case in mathematics 
where roundoff error plays a useful role in an actual calculation. 

6. CONCLUSIONS. The Gauss map has been shown to be a good example of a 
chaotic discrete dynamical system, in that it exhibits in an accessible fashion all the 
common features of such systems. The map is simple enough that the relationship 
of numerical simulation of the map to the exact map can be explored effectively. 
We find that the numerical simulation of the map behaves significantly differently, 
in that the numerical simulation is not chaotic, but is still useful in that the 
Lyapunov exponent of the exact map can be accurately calculated from the 
simulation. We have in fact shown that this behaviour of numerical simulation is 
general. We have also exhibited a new (though impractical) method for the 
calculation of 7T. 
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